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A maodel is formulated to describe the effect of the time interval chosen for preventive
maintenance upon the frequency of failure and frequency of total maintenance (preven-
tive and corrective). Trade-offs between these mwo frequencies are determined by conipu-
ration of an optimal interval in the case where the failure distribution is known, For
unknown distributions, an adaptive statistical teclhmique is developed that converges to an
optimal preventive maintenance interval. A memnerical illustration is given. -

l. Introduction

The proper goal of a preventive maintenance policy is to
improve the availability and reliability of equipment, Such a
policy is likely 10 be costelfective, however, only it it is
designed 1o take into account and to control the overall cost
of corrective and preventive maintenance. DSN experience
shows that preventive maintenance is a substantial component
of cost (Refl 1), This article is intended as a first step in the
development of effective methods for reducing preventive
maintenance costs by performing  such  maintenance only
where and when it is most elTective,

The basis for the method studied in this article is a probabi.
listic wodel of successive maintenance cyceles. Each cycle ends
with the performance of preventive maintenance at a sched-
uled time, or, it failure occurs carlier, with corrective mainte-
nmance. Whichever way g eyele ends, the successive cycles are
assumied to be generated by independent trials of some failure
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distribution. The broad class of failure distributions considered
allows for the possibility of higher tailure rate carly in the
cycle, e.g., occasional bad effects resulting from maintenanee
activity,

After formulation of the model and derivation of necessiny

“formulas in Section 1, it is determined in Theorem 2 of Sec-

tion 1 how to make optimal tradeotts between the frequency
of faiture and frequency of naintenance (preventive and cor-
rective combined) by choosing the right time interval fn
preventive maintenance based on a known faiture distribution.
Section IV considers a statistical technique for the case of
unknown tailure distribution, This technique modifies the
choice of intervals for proventive maintenanee as expericnee
accumulates, The sequence of choives converges in probability
10 the optimum, as shown in Theorem 30 A numerical example
illustrating the required computations is given in Section V.
Additional remarks, including possibilities tor further investic
gation, comprise Section VI,



1. The Model

Consider a fixed type of reparable equipment whose times
between failures T\ Ty, - are independent with distribution
function F, Assume that F has a continuous density £, and let
It be the failure rate function, ffF, where F = 1 - F. Thus, hi(1)
represents the rate of failures in the interval between ¢ and
¢+ dr. Suppose that a time interval i > 0 is chosen for preven-.
tive maintenance. Then if a time m has elapsed since the last
failure, preventive maintenance is performed. 1t will be
assumed throughout that preventive maintenance, as well as
corrective mintenance, restores the equipment to the condi-
tion where its time to next failure has distribution function F.

Theorem 1:

If > 0 is the preventive maintenance interval, then

0. F(n
frequency of failure = —L—)—
”m
F
0
and
. 1
frequency of maintenance =
F
0

the latter including both preventive and corrective mainte-
mnee.

Proof:

If Ty, Ty.---are the successive times between failures in
the absence of preventive maintenance, then X', = min (.
T, Xy = min (n, Ty).---are the times between mainte-
nances, and they are independent and identically distributed.
Let WV be the number of X7s until the first failure, i.c.. the first
time X, =T,. Since N is distributed like the number of
independent flips required to get the first “Heads,” where
MHeads) = AT<m) = Fim), EN=1/Fm). Let §, =
X4+ X o2 Loand note that the time of first failure is
Sy =X, e+ X, atfter which the whole process repeats
itself, Since £Sy = £V« EX, by Wald's equation for randomly
stopped sums, the frequency of failure is

l _Femn) F(m) F(m)

”n = m
J. PLY, > 1) dt f F
0 0

Simifarly, the frequency of maintenance is 1/EN,, which is
given by the formula stated in the theorem, and the proof is

complete,

ES, ~ ENYEX, EX,

ll. Optimal Preventive Maintenance for
Known F

Suppose that it is desired to choose a maintenance interval
m >0 1o minimize

R(m) = Frequency of fuilures + ¢« frequency of maintenances

_Fum+e

m
[ F
0

where ¢ 2 0 is chosen in advance. The choice of ¢ determines
the tradeoff between the two frequencies. It the choices made
for different types of equipment are proportional to the rela-
tive costs of maintaining them, then the total spent on mainte-
nance is distributed optimally — that is, minimizes the total
faiture rate of all equipment types. This is analogous to the
determination of optimal allocations of spares o different
types of equipment (Ref, 2).

This section considers the case wheee the failure distribu-
tion. F. is known and, hence. also fand /1. Though not very
practical, it is an instructive case to consgider, and the resulis
obtained provide a foundation for the more realistic Tormula-
tion in the next section,

Theorem J:

Assume that the failure rate function, A, is continuous and
positive on (0. =) and is “peak-free.” i.e.. is cither monotonic
or clse, for some > 0. is nonincreasing on (G, ) and nonde-
creasing on {d. 90). Then the limit of & at +oe, Ji(e0), exists
{possibly infinite) and

(D If ¢ 2h(e°) ET- 1. then R is nonincreasing and
bounded below by its limit at 4oe (1 + ¢V ET, which is
attainable by choosing m = +eo, whereas

(D) 1T ¢ <hee) KT - 1. then the solutions of RtmY = him)
are an interval [or . mg ] (possibly mey = mry) such tha
R(mY is decreasing on (0. ) constant on [m ],
and increasing on {m . o).
Proof:
The limit le(eo) exists since X is cither nonincreasing or else

is eventually nondecreasing, By routine cateulation,

Q) L

Fumy f F
0

R'(m) = (1
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where

Q) = I:(m)f F-F(m) +¢] (2)
()

and
I} _ b
Q) - Qa) = (B - h(a)lf F*J ey -n F (D
(1] @

It is clear from Eq. (3) that h(r) 2 Wb) for all ¢ <b implies
that Q) 2 ((b) also. Hence, Q is nonincreasing on any inter-
vial (0.d) where It is. Also, if h(b) > h(a). then (b)) 2 Qa)
and, hence. @ is nondecreasing wherever hois. Thus, Q is
peakfree like /1 and by (2) is also continuous. Since
Rm) = 40005 m 4 0, R'(m) <0 for arbitrarily small positive m
and by Eq. (1), therefore, @(m) <0 for arbitrarily small posi-
tive ;. Since a peak-free function cannot assume i sequence of
vialues negative-to-puositive-to-nonpositive, evidently cither Q is
never positive or ¢lse it is negative on some interval (0.m).
zero ot g, nry ] and positive (as well as nondeereasing) on
(my.00), These twao cases occur respectively, as (o) =
IRWET - (1 +¢) is €0 or >0, Since. by (1). R' and Q have
the same sign, the conclusions about R(m) in the two cases
tollow immediately and the proot is complete upon noting
that, by Eq. (2). Q) = O is equivalent 1o Ren) = ().

Note that i 7 is differentiable, then

m

Q'em = h'(m)f F.
0

and Newton's method san be applied to solve Q) = 0 numer-
ically,

IV. An Approach to the Optimal m When
F is Unknown

Under the assumptions of the preceding sections, we will
now show Tow to choose successive maintenance intervals M,
Myo-o-. based on accumulating experience, so that W}
converges to the optimal interval {m, . m, ] in probability, The
choice of M, is based on the observations ¥y ¥y -0 LY,
where ;= min (M, 7)) are the successive times between
maintenances, and the choice also takes into account which of
the Y;'s are failures (e 7; M) The methed s based upon
estinuting the “survival function.” AX). at every stage by the
Kaplan-Meier (Ret, 3 Product Limit Estimate (PLE)
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no. of ohservations surviving t

K(x) = H

lk<x

no. of observations reaching Y

where the ¢, are the points at which failures have been
observed. Here the “number of obscrvations reaching 7,7 is
just the number of s 2., while the “number of observa-
tions surviving £,”* is the same number minus the number of
observed failures at 7, It is convenient to modify the defini-
tion of A(x) by stipulating that A(x)=0 for x> largest
observation (failure or not). Note that K(0) = 1 and K is a step
function with downward jumps at the points where failures
have been observed, falling to 0 after the Largest observation, h
is well-known that K(v) is 3 consistent estimator of F(x)
(Rell 1), e i K (0) denotes the estimate atter n cyeles,
Yoo ¥, then

n

K, (x) = Fx) with probability one as i -+ o0

for v such that M, > x for infinitely oy . In faet, this
convergenee is uniform for such x because the functions K, (v)
are bounded and nonincreasing,

A recipe tor choosing M My, ccan be given as follows,
Let R,(+) denote the estimate of the function K+ obtained
by using K, (v) in place of FLx) in the definition of R (note
that 1 = &, replaces ). Then tet M, = +ooand for n > 1,

(N Let .\I,', denote the value of mwminimizing R, (1),

(2) Choose M, ,, =M, with probability 1 - I/n

n+1

= +oo with probability 1/n.

Step (1) is computationally feasible since the numerator of
R, (m) is constant for m between successive failure times. 7,
whereas the denominator increases, and it is casy to verity that
the minimum of .R,,(m) is attained cither at one of the failure
times, £y, or at the largest observation (failure or non., (Note
also that the integral in the denominator off R, () is easily
caleulated since the integrand is K. a step function.) The
randomization device used in step () provides a means of
increasing M, from time to time to gain information about
possible ms larger than the ones used so far.

For the scheme of choosing L3,} just described, we obtain
the following result:

Theorem 3:

Wb <m.a>m, then M P, <by=0, )i PO, >
a)=0.and i LIRS RN+ ¢ =0 tore >0,

T



Proof:

Since P(AL, # M) = Ui = 0, it suffices o prove all three
conclusions with M [ in place of A,,. To prove the first conclu.
sion for A, it suffices to show that for b <'m, ., with probabil-
ity one. all but finitely many A3 are > b.

Now. since

3 opgr # M)

”

diverges. infinitely  many  Af,'s equal 400, and, hence,
R, (n) = R(m) uniformly on (0. b + 1].

Also, for all mr € b, R(m) 3 R(D) > R(min (b + 1.m ;). s0
that, for sutficiently large n, by the uniform convergenee,

R, >R, (min (b + om Nloraltm < b

which implies that M,; > b, Thus, only finitely many M,', are
less than b, and the first limit in Theorem 3 is proved.

The second limit is shown to be zero by a similar argiment.
The third limit is zero since by Theorem 2 R(n) > Rim)+¢
only it m <hor m>a tor some b <o ora>m,.

V. A Numerical Example

To illustrate the computations needed for the method of
the preceding section, suppose that successive cycles of lengths
(in days) 47, 20, 26, 19, 27, 16, 18, 20, 20, 3§ are observed.,
where the undedinings denote failures. Assume that ¢=0.5.
The necessary computations are shown in Table I, and & and
the estimated R are graphed in Figs. 1 and 2. Note that the
computations enly need to be performed at time points where
failures occurred and at the largest observation (failure or not).
The minimum R(r) is at the largest obscrvation, 47, Thus,
M =47 and this value would be chosen as the preventive
naintenance time for the next eyvele, unless the randomization
produced M, = 40 (the probability of this being 0.1), in
which case there would be no preventive maintenanee in the
next cyele, and the evele would end at the next failure. At the
end of the next eyele, new computations of the entries in
Table 1 would be required. I the cyele ended "at 17, for
example, the “16™ column would be unchanged. but the *19*

and 267 columns would be recomputed. Alsoc it the ovele
ended with a failure at o new svalue), then a new column
would be inserted for that revalue,

This updating of the columns atter cach ey ele is not Jdifli.
cult because A7) is obrained by multiplying the vatue in the
preceding column by a fraction, and the integral of K(x) up 1o
¢ is obtainable by adding the area of a rectungle to the integral
in the preceding column,

VI, Additional Remarks

In practice. the situation is usually slightly more compli-
cated than that deseribed in the preceding section, because one
has several picces of the sime 1vpe of equipment and simul-
tancously must set M, s andd accwmulbate experience from all of
them, It is not hand to modity the recipe. however, to-des!
with this situation, One can simply recaleutate K()atter cuch
observation (on any of the picces) and caleslate the next M,
desired. I one or more picces have already exceeded an
clapsed time of A, since their Last maintenanee, then perform
preventive maintenance on then, Thus, one sometimes ob.
serves longer eveles than the recipe would call for, but there i
no significant change needed in the proot of Theorem & orm
the carrving out of the recipe,

It is interesting and perhaps usetul o try 1o relax the
assumption that preventive maintemmee restores the equip-
ment to jts original failure distribution, F-- sav, to allow a
separate contribution to the faiture rate depending upon the
age of the equipment, 1t is straightforward o modity the
*known F analysis of Section 2 to accommaodate this sort of
extension — cven it the age-contribution is unknown (sinee it
is unaftected by the choice of m and, henee, acts merely s a
sort of “background radiation™ of failures). The extension in
the “unknown F ¢ase, however, seems more difficult, It is
perhaps helpfui ro assume that the age-dependent failure rate
is known,

Another promising approach to the determuuition of pre-
ventive nuintenanee strategies is the use of measurements of
“indicator variables™ reflecting the geed for preventive mainte-
nance, These variables might be levels off contamination. pres-
sure, vibration, cte., or various measures of performance like
the rate of random errors. By measuring such variables, one
can expect o anticipate failures that could be prevented (or,
at least, postponed) by timely naintenanee,
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Table 1. Computational results for Illustration

Value of ¢

No. teaching ¢
No. surviving ¢
K

'
f Kx)dx
[

estimated R(1)

16
10
9
]

16

0.0313

19
8
?
0.9

18.7

0.0321
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s
4
0.788

M.
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1
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Fig. 1. K(1)
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Fig. 2. Estimated R(t)



